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The general differential equations of the kinematics of the rolling of a smooth rigid surface along two
smooth rigid lines without sliding are investigated. A formula for the velocity of rotation of this surface
relative to the path traversed is obtained and the types of characteristic points of the rolling are
specified. Examples are given.

In a previous paper [1], the system of differential equations of the rolling of a smooth rigid
surface without sliding along two smooth rigid directrices was derived, in which the length of
the arc of one of the directrices was chosen as the independent variable. This not only
introduced asymmetry into the basic system of the equations but also made a local nature of
the discussion inevitable in cases when, in the kinematical meaning of the problem of rolling,
this length varies non-monotonically.

Unlike this approach, an arbitrary parameter is chosen below as the independent variable.
An important example of such a parameter is the total angle of rotation of the body when the
body rolls. In this connection, a formula is derived for the velocity of this rotation with respect
to the path traversed, which, in particular, leads to the specification of the natural types of
characteristic points of rolling. This approach enables the above-mentioned drawbacks to be
avoided but introduces its own difficulties. Thus, the equations become more complicated
when the angle of rotation is chosen, and, moreover, one is forced to go beyond the scope of
“purely mathematical” proofs (see [2]). In particular, the possibility of rolling itself is assumed
without mathematical proof. It is useful to bear both approaches in mind.

There is an extensive bibliography, beginning with Painlevé’s publications (e.g. [3]), on the
related problem of taking sliding into account in the dynamics of the rolling of a rigid body
along directrices.

1. THE DIFFERENTIAL EQUATIONS OF ROLLING FOR THE CASE OF AN
ARBITRARY ARGUMENT

Suppose two directrices are specified in space and are oriented, sufficiently smooth lines L,
and L, without common points and have the vector equations r=£(s;) (=1, 2), where |s|is
the arc-length of the line L, measured from a certain point on it, while an increase in s,
corresponds to the orientation of this line. Suppose further that an oriented, sufficiently
smooth surface Q is given by the vector equation r=g(u, v), and that the vector n(u, v)=g,(u,
v)xg,(u, v)/Ig,(u, v)xg, (4, V)is directed along the outward normal to Q, where Q is the
boundary of a certain body.
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We shall assume that rolling of the surface Q along the lines L, and L, is determined by a
family of motions K*:Q+~> K*“Q which depend fairly smoothly on a certain parameter o, and,
for each value of o, the surface K“Q has the single common point M;* with the line L, (i=1, 2)
at which L, touches K°Q. In addition, it is required that near M7 the line L, should be on the
exterior side of K°Q and the point M should depend continuously on «.

Denote the value of s, for the point M? by s and the coordinates of the point
N2 :=(K*Y'M? by u?, vf. Then, by increasing o by da using the condition that there is no
sliding, and then changing from differentials to derivatives, we arrive at the following system of
five non-linear differential equations:

ig, (u;,0,)u; + 8, (u;, v)0}1=15]1
[8(u3,0;) — 8wy, 0)))- [, (4,0, ) + 8, (4, 0,)0] ] =
= [fz(sz)" f] (sl f,"(s,' )S: (i=12) (1.1)

(g, (0, 4y + 8y (17,0, )01 1 (8, (5,0 Jus + 8. (15, 0)03 1= (5)) - £, (5,)si53

where the prime on ], v, s/ denotes the derivative with respect to a and the superscript o is
omitted for brevity. In addition, the following equality must hold

(813, 0;) — 0y, 0p))- {[8,, (g 0y Jasy + & (14,01 Y01 IX (8, (102, 0 Y1ty + 8 (1, 02)03 T} =
=[f,(8,) - £ (s )1+ [f (5 ) X £5(8,)]si35

and it is essentially that only the signs of the left-hand and right-hand sides should be the same
since the coincidence of their moduli follows from Egs (1.1).

The six required functions s;,, v, v, (=1, 2) of o are also related by two finite equations.
One of them is obvious, namely

Ig(uy,05) — g(up“])‘=|f2(32)“‘ f; (-5'1 ) (1.2)

The other one has a more complicated form and can be obtained by eliminating #/, v/, s/ from
system (1.1) (see [1]) or from geometrical considerations [4]. Taking these finite equations into
account we obtain that the general solution of system (1.1} includes three arbitrary constants
once the parameter o has been eliminated from it. Hence, the set of geometrically different
motions is, in general, three-dimensional.

It is essential that the system of equations (1.1) should be homogeneous with respect t0 u;,
v}, s;. It therefore only specifies the trajectories on the four-dimensional manifold defined by
the above finite equations but not the law of motion along them as a function of a. For a more
precise definition of this law it is required to indicate the specific meaning of the parameter o;
thus, we may assume o =s, [1]. Other examples will be given in Section 4.

2. THE VELOCITY OF ROTATION WHEN THERE IS ROLLING

Theorem. Suppose that, during rolling, the surface K°Q has rotated through an angle dy
about the axis MM, in the positive direction. We then have

MEME| ds, (i=1,2) @.1)

o £7(s) _sgn(wi-cf') K
te® le? - K*n%

]

U, agCagl  prr & a0, 0
c,» = M‘ M2 Xf,-(si ); “‘- .—n(ui ,1),- )
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where v{ is the principle normal unit vector and k is the curvature of the normal section of
the surface K°Q at the point M in the direction of £{s{).

The proof is given in the Appendix (Section 7).

To find the value of k* in (2.1) when the quantities u, v, s, (i=1, 2) are known it is
required to find du,/dv; which can be done by dividing the first of Eqs (1.1) by the second
equation for given i. It is then sufficient to use Euler’s theorem on normal sections [5].
Knowing du,/dv; we can also calculate l¢f- K°n]' | since

lef - Konl1=l{{g(uy , v3)~-g(,07)Ixh; '} nfl

where h:=(K°)f/(s?) is the unit vector, tangential to Q at the point N in the direction of
du,/dv,.

3. THE CHARACTERISTIC POINTS

We shall specify the relative positions of Q, L, and L, possessing certain qualitative
features.

Suppose ¢°=0 for some i and o, ie. £{s7)IM> M°. Then ds,/dy=0, i.e. when dy is
finite, this position is stationary for s,. If this equality holds for only a single i, then it will be
violated immediately when further rolling occurs, i.e. an instantaneous stop occurs for s,. A
change in the direction of motion of the point M/ after the instant @, is typical. If ¢*=¢}* =0,
the points M;" and M; remain stationary when rotation occurs.

If ¢ 20, ¢°-K*n® =0 and k® 20 a similar situation occurs. The only difference is that if
these conditions are satisfied for i=1 and i=2, the stopping of the points M; and M; is, in
general, instantaneous, with the exception of the case when n® {ln® I N°N;°, the points M
and M; then remain stationary.

The opposite occurs when

o sy O 3 o
¢, -f1s)) _sgn(w;-¢])

1CF 1 K%

ki when o =0 G

In this case ds,/dy =, i.e. when ds; is finite we obtain dyl,_, =0. (Hence it follows that if
equality (3.1) holds for only a single i, the relation ds;/ds,=0 (j#i) is satisfied when a=c,.)
In this case it is typical that dy changes sign after s, passes through s, and therefore if (3.1)
only holds for a single i, a change in the direction of motion of the point M; (j=i) is also
typical when this passage occurs.

For equality (3.1) to be satisfied it is sufficient that, in particular, the line L, should make a
contact with the surface K*Q at the point M of higher than the second order. But such
contact is not necessary which can be proved by putting, for instance

K®Q={(x,y.2): z=x-y*}, M;°(0,0,0), L, ={(x,y,0): (x+y)’ =x-y}, MI°(0,1,0).

The surface K*Q was assumed above to have only a single common point M with each of
the lines L,. If this requirement is not imposed, two versions of the formulation of the problem
are possible. Thus, we can assume that the surface K°Q is permeable for the lines L. This
means that K°Qn L, can also include other points, besides M, for which there is no contact
requirement. In this case the use of system (1.1) is the same as when K“Qn L, ={M?}.

In the second form of the statement of the problem, which is more natural in the context
of mechanics (the rolling of a rigid body of fixed shape), the lines L, should not be inside
K*Q. Then, during rolling characteristic points of yet another type can occur, specified by the
values o =a, for which the surface KX*Q has more than one common point with at least one of
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the lines L;. Here, when the rotation continues, the appearance of discontinuities of the first
kind of the functions a—u’, vf, s' when o=0, is typical. An example will be given in
Section §.

4. THE CHOICE OF THE ROLLING PARAMETER

It is natural to introduce the variable y = fldy | by summing small angles of rotation of the
surface K°Q from the initial position to any current position, This variable can be used in the
system of equations (1.1) by putting o =1y, which preserves its symmetrical form. To fix the
geometrical meaning of the argument we must add Eq. (2.1). (This is sufficient for any single i,
since if dy is eliminated from Eqgs (2.1) with i=1, 2 we obtain the consequence from system
(1.1)). The drawback of introducing % is the fact that, in the general case, it has no direct
geometrical meaning, if the vector MM, changes direction, because an increment of y
depends not only on the initial and final positions of K°Q but also on the whole method of
transferring from one position to another.

When investigating the dynamics of rolling it is natural to assume that a in Eqs (1.1) is the
time ¢. In this case we must add to Eqs (1.1) the equation which specifies the velocity of motion
of the representative point along a trajectory in the phase space. Suppose the motion of the
body, bounded by the surface K'Q, occurs in a potential force field, and suppose the potential
energy of the body, when the points (¥, v,), (4, v,)€Q coincide with the points s, and s, of
the lines L, and L, respectively, is equal to Uy, v, i, v,, §;, 5,) and the moment of inertia
of this body about the axis passing through the points (i, v,) and (&,, v,) is equal to I(x,, v,,
u,, v,). The necessary supplementary equation, if energy dissipation is ignored, then has the
form

2
lI(u,,‘o,,m,,nz)(ﬂ) +U(uy,9,,4y,9,,5,,5,) = const
2 dt

where the expression for dy must be substituted from (2.1).

S. EXAMPLE 1. ROLLING OF A CIRCULAR CYLINDER ALONG
PARALLEL CATENARIES

Consider the simplest kind of rolling of a circular cylinder of radius R along the pair of parallel
catenaries. Here we have

Q: r = Rcosvi+uj+ Rsinvk
L: r=aarsh(s/a)i+(=1) i +(a® +s2)7k (i=1,2)
where a,l > 0 are parameters. We shall assume that during rolling the generatrices of the cylinder remain

parallel to the y-axis. All possible motions are then obtained from a single motion by simple translations
and rotations. We therefore put

w=(=1y1 (i=12), v;=v, =10, 5 =5, =s

System (1.1) reduces to the single equation 1RV i=ls’l, i.e. we can assume that Rv=s+const.
Furthermore, formula (2.1) gives

dw:[_.l.'_ 2a 2)‘13

R s5"+a
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Hence, we obtain that if R < a, there are no characteristic points mentioned in Section 3 and we can put

s §
» Y=—-—arctg—

§
v=—
R R a

When R=a a stationary point s=0 for y(s) appears.

Now suppose that R > a; this case is of greater interest. If the surface K*Q is assumed to be permeable
for the lines L,, it can roll uninterruptedly along them, i.e. s can be taken as the parameter o.. However,
when s increases in the interval (-[a(R-a)]'?, [a(R-a)]"*), we then have dy < 0, ie. rotation occurs in
the negative direction.

-If the surface K®Q is not permeable for the lines L, when R > a, the picture is different. When
s=ztaMR/a) the surface K"Q has two points of contact with each of the lines L,, where A(p) is the single
positive root of the equation

A=shiph(1+A1) %) (p>1)
Hence, two characteristic points of the latter type described in Section 3 appear here and s can only
take the values in the intervals (—eo, ~aA(R/a)) and (aAM(R/a), ). When the surface K°Q reaches these

points it “passes” continuously from one interval to another so that s and v undergo discontinuities of the
first kind but ¢ remains continuous.

6. EXAMPLE 2. ROLLING OF A SPHERE ALONG A PAIR OF PLANE LINES WHICH
ARE SYMMETRICAL WITH RESPECTTO EACH OTHER

The characteristic feature of the rolling of a sphere is that one more finite equation connecting s, with
s, (in general, quite lengthy) appears here. As a result the set of geometrically different motions becomes
two-dimensional, if the points of the sphere differ, and zero-dimensional (discrete), if they do not differ.
Consider the simple case when the lines L, lie in the x-y plane and are symmetrical to one another
about the x-axis, i.e.
() =x(s)i+y(8)j, f(s)=x(s)i—-y(5)]
where x(-) and y(-) are specified sufficiently smooth functions, and
¥9)>0, x'()>0, [¥SF +Iy' () =1
Let Q be a sphere of radius R and « and v be spherical coordinates with poles on the y-axis, i.e.
g(u,v) =(Rsinvcosu)i+(Rcosv)j+(Rsinvsinu)k
From considerations of symmetry we obtain

S| =85y =15, W) =Uy =i, Vy=N-0,=VE(0,n/2)

Equality (1.2) takes the form Rcosv=y and defines the quantities v(s ), while the first equation of (1.1)
takes the form

R? (sin” udu® + dv?) = ds*
whence we obtain the equation

du=+(R*x' -y Y (RE = y2) N ds 6.1)
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for the function s+~ u(s). Here the upper (lower) sign is chosen if the z-coordinate of the centre of the
sphere K“(Q is greater (respectively less) than zero.
Formula (6.1) implies, in particular, the necessary condition for rolling to be possible

¥s) < Rx'(s) (6.2)

When this inequality becomes an equality the centre of the sphere K“Q lies in the x—y plane.
To apply formula (2.1) we find

¢ =2xyk, f/ls,)=x"i-(-1'y"}, k'=1/R

, 2.2 2.0 ]
. R -

K“n?:l __yy_i‘_(_l)’yj:p_(._.f___j_y_l_k
Rl x x

d

with the same rule of signs as in formula (6.1). Hence we obtain
ds=FR X OF Iy dy ©63)

Thus, the points, at which inequality (6.1) become an equality, are characteristic points, namely,
stationary for s; ¥ has no siaiionary poinis here and, hence, y can be giobaily taken as the parameter o.
Note that (6.1) and (6.3) imply the inequality |duw/dy i<1 which becomes an equality only if y’(s)=0.

From (6.3) we obtain the differential equation

d2s1 dy? +y(s)y (s)- R2x'(s)x""(s) =0

showing, among other things, what happens near the characteristic values of s; namely, if s=s* is such a
value and the condition

" 10, *

yi{s J#R(s ) (64)
holds then for s=s* we obtain ds/dy=0, d’s/dy’#0, i.e. when v passes through y*(s|,_,.=s*) the
function y—> s(y) changes the direction of its variation. This means that the centre of the sphere KYQ
crosses the x-y plane and the sphere starts to move backwards. If inequality (6.2) is strictly satisfied inside
a certain interval s**<s=<s* and becomes an equality at the ends of the interval, and condition (6.4) is
satisfied at both ends, then, when y increases continuously, the sphere moves periodically with a period
(over y) equal to

Suppose, for example, that the lines L, have the equation y =(-1)"ach(x/a) with 0 < a <R and suppose
s is measured from the point (0, a). The critical points are then s=*[a(R—a)]"? and the period (over ) is
equal to

ia(R—a)}'y?' 2 2%, 2.2 2. 2.2-% 4a /n R-a ’R__a‘%.\
¥=4 i @ +5°)Y*a“R° —(a“ +5°)' ] ds= [ (R+ J J
a

n =,
0 [RR-a)P? |2 R

where I is the elliptic integral of the third kind.
If we require that y(s*)= Rx"(s*) instead of condition (6.4), then in a sufficient vicinity of s* the

inequality

;Rz[x'(s)]z _[y(s)]zls C2(s—s‘ )2 (C = const > 0)
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holds and it therefore follows from (6.3) that Ids/dy|<Cls—s*|. Hence, when s=# s* we have

ﬁ ] =0
dy
Hence €Y |s—s*I>const >0 and, therefore, s-»s* only when y — .
Thus, the sphere XK“(Q approaches the characteristic point only asymptotically, making an infinite
number of revolutions. Since in the limiting position, when s=s*, rotation without changing s is possible,
we obtain that the case under consideration is realized if and only if y{s*)=R, y(s*)=0.

—é—(ewfs-w*l): CeMis—s"1+eY sgn(s—s*)f-wiaew(ds—s‘l-

7. APPENDIX. PROOF OF THE THEOREM

We will first prove the lemma on the change in curvature of a line when projected. We shall consider
orthogonal projection onto a plane P’ and denote the images after projection by primes. Let M be a point
of a sufficiently smooth line L. We will establish a relation between the curvature k of the line L at the
point M and the curvature k’ of the corresponding line L’ at the point M’

Lemma. The following formula holds:

k' cos’ B = kcosy

where Be[0, nt/2] is the angle of inclination of the line L to the plane P’at the point M and v [0, n/2] is
the angle between P”and the touching plane P of the line L at the point M.

Proof. Without loss of generality, we will assume that the line L lies in the plane P. Let! be the tangent
to L at the point M, T be the unit vector of this tangent, n be the unit vector of the principle normal to L at
M, and d L P’ be the unit vector. Choosing Ae€l, BeL, AB Iin we have |ABI~kIMB12/2 as A— M.

Furthermore, projecting onto P, we obtain

MA’=MA-(MA-d)d, A’B”=AB-(AB-d)d

Therefore, the modulus p of the projection of the vector A’B’ onto the principle normal to L” at M" is
equal to

YU ‘AT-A'B rY: -d)*(n - d)? %
TR 1 - | e o | | = (1 ABI[1 = (n- )2V )1 - —T -
(MWHA’B’!” (ABI1~(n-d)’] }{1 H-(r-d)* 1= (n-d)’]

[t =(r-)® ~(n-d)2 TR SY

(-(r-d)?)2 cosB

=ABI

However, it can be easily verified that k’=2lim(p!| M'A’I") as A —> M. Hence

k=2 lim mm"“*;mr’n (rod)t =2 S8Y gy AB ) cosy
A-M osf cos 3B a—um IMAI

This proves the lemma.

Considering now the proof of the theorem, we will first examine the special case when K°Q is a
cylindrical surface with generatrices parallel to the MM axis, and the line L, lies in the plane
PPLM{M;. We also assume that the vectors f{s}) and v} are directed opposite to the vector ¢! and that
ki =fls})I< k}'. We replace the lines L, and K*Qn P® by their osculating circles at the point M and
we denote the centre of the second circle by O].Then, after rotation we obtain, omitting small higher-
order terms
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dy = LOPMPOPH = k108 OF 1= kP (1~ kS 1K IMEME 1=k — & yds,

Consideration of the remaining forms of arrangement of the vectors f”(s’) and ¥ relative to o
shows that, in all these versions, in the special case investigated, the equality

dy = {ky, sgnlf(s})- ] 1- k" sgn(w - € )}ds; 1)

holds for any relation between k; and k.

Now let the surface K°Q and the lines L, be arbitrary. Up to third-order infinitesimal terms in ds,,
replace the line L, by its osculating circle L] at the point M and replace the track of this line on the
surface K°Q, which is produced when the latter rolls, by the line D, of the intersection of K*Q with the
plane passing through M. parallel to the vectors f{s;') and ¢'. If we now draw a cylindrical surface
through D? with generatrices parallel to the vector MM, and project L and D! onto the plane
S1M;M;, then the general case under consideration reduces to the special case analysed above.

Putting 17" :=£(s]"), £5:= MM /IMZM; | for brevity, we find the curvature k? of the line D at the
point M

e %3 4@ I x 31
T icos(K®nl At xS ¥ x13)-K%nfl

by Meusnier’s theorem [5].

We now use the lemma. Since, in this case, B is the complementary angle between 7 and f;; and y is
the angle between the vectors 7{ x{(1{ xf3) = (7 - 32! — £ and f3 then, by the lemma, we find the
curvature after projection

lcosf(T® - f3 )02 — 3,05} k®

kY =kt = =
Co sin® (78, 13) 1- (7% £5)?

= kP X I Ko (1 (a% 13 1A

The curvature kz' of the projected line L, is found in a similar way. Here B is the same as above and y
is the angle between £(s7)X 7} and f. (We assume that £*(s{)= 0, otherwise we have kj' =0.). Putting
pr =£"(s")/) f(s7) | we obtain by the lemma

' -3
Ky =B X001 = (6377

Finally, note that the element of ds, of the length of the arc of the line L, on projection becomes
shorter by the formula

ds)=[(1- 77 -£3 71 ds,

Hence, applying formula (7.1) to ds] and reverting to the initial notation, after simple reduction we
obtain (2.1).
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