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A RIGID 

The general differential equations of the kinematics of the rolling of a smooth rigid surface along two 

smooth rigid lines without sliding are investigated A formula for the velocity of rotation of this surface 

relative to ihe path traversed is obtained and the types of characteristic points of the rolling are 

specified Examples are given. 

In a previous paper [l], the system of differential equations of the rolling of a smooth rigid 
surface without sliding along two smooth rigid directrices was derived, in which the length of 
the arc of one of the directrices was chosen as the independent variable. This not only 
introduced asymmetry into the basic system of the equations but also made a local nature of 
the discussion inevitable in cases when, in the kinematical meaning of the problem of rolling, 
this length varies non-monotonically. 

Unlike this approach, an arbitrary parameter is chosen below as the independent variable. 
An important example of such a parameter is the total angle of rotation of the body when the 
body rolls. In this connection, a formula is derived for the velocity of this rotation with respect 
to the path traversed, which, in particular, leads to the specification of the natural types of 
characteristic points of rolling. This approach enables the above-mentioned drawbacks to be 
avoided but introduces its own difficulties. Thus, the equations become more complicated 
when the angle of rotation is chosen, and, moreover, one is forced to go beyond the scope of 
“purely mathematical” proofs (see [2]). In particular, the possibility of rolling itself is assumed 
without mathematical proof. It is useful to bear both approaches in mind. 

There is an extensive bibliography, beginning with Painleve’s publications (e.g. [3]), on the 
related problem of taking sliding into account in the dynamics of the rolling of a rigid body 
along directrices. 

1. THE DIFFERENTIAL EQUATIONS OF ROLLING FOR THE CASE OF AN 
ARBITRARY ARGUMENT 

Suppose two directrices are specified in space and are oriented, sufficiently smooth lines L, 
and L, without common points and have the vector equations r = t(si) (i = 1, 2), where I si I is 
the arc-length of the line Li measured from a certain point on it, while an increase in S, 
corresponds to the orientation of this line. Suppose further that an oriented, sufficiently 
smooth surface Q is given by the vector equation r = g(u, u), and that the vector n(u, u) > g,Ju, 
II) xg,,(u, II)/ I g.(u, u) xg,(u, u)l is directed along the outward normal to Q, where Q is the 
boundary of a certain body. 
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We shall assume that rolling of the surface & along the lines L, and &. is determined by a 
family of motions Ka :Q t--* K”Q which depend fairly smoothly on a certain parameter ot, and, 
for each value of a, the surface K”Q has the single common point MF with the line Li (t = 1, 2) 
at which Li touches K”Q. In addition, it is required that near M,? the line L, should be on the 
exterior side of K*Q and the point MT should depend continuously on a. 

Denote the value of si for the point M,? by SF and the coordinates of the point 
iVf:=(K”)-‘M,P by u:, us, Then, by increasing a by dol using the condition that there is no 
sliding, and then changing from differentials to derivatives, we arrive at the following system of 
five non-linear differential equations: 

where the prime on u,!, u;, sl denates the derivative with respect to a and the superscript cx is 
omitted for brevity. In addition, the following equality must hold 

and it is essentially that only the signs of the left-hand and right-hand sides should be the same 
since the coincidence of their moduli follows from Eqs (3.1). 

The six required functions si I ui, vi (i = 1, 2) of a are also related by two finite equations, 
One of them is obvious, namely 

The other one has a more complicated form and can be obtained by eliminating z(, u:, s; from 
system (1.1) (see [l]) or from geometrical considerations [4]. Taking these finite equations into 
account we obtain that the general solution of system (1.1) includes three arbitrary constants 
once the parameter a has been eliminated from it. Hence, the set of geometrically different 
motions is, in general, three-dimensional. 

It is essential that the system of equations (1.1) should be homogeneous with respect to E& 
u;, s;, It therefore only specifies the trajectories on the four-dimensional manifold defined by 
the above finite equations but not the law of motion along them as a function of a. For a more 
precise definition of this law it is required to indicate the specific meaning of the parameter CX; 
thus, we may assume a = s, [l], Other examples will be given in Section 4. 

2. THE VELOCITY OF ROTATION WHEN THERE IS ROLLING 

Tk~rem. Suppose that, during rolling, the surface K*Q has rotated through an angle dv 
about the axis MyMF in the positive direction. We then have 
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where v,P is the principle normal unit vector and kip is the curvature of the normal section of 
the surface KaQ at the point M8? in the direction of f&$). 

The proof is given in the Appendix (Section 7). 
To find the value of ky in (2.1) when the quantities y, ui, si (b’=l, 2) are known it is 

required to find dui ldv, which can be done by dividing the first of Eqs (1.1) by the second 
equation for given i. It is then sufficient to use Euler’s theorem on normal sections [5]. 
Knowing duj I dq we can also calculate It:. K”nP I since 

where hip:= (K”)-‘f;(s,P) is the unit vector, tangential to Q at the point Np in the direction of 
dui ldu,. 

3. THE CHARACTERISTIC POINTS 

We shall specify the relative positions of Q, & and L, possessing certain qualitative 
features. 

Suppose e” = Cl for some i and a,, i.e. f~(s~)ll~~~~. Then dst/dv= 0, i.e. when dty is 
finite, this position is stationary for q. If this equality holds for only a single i, then it will be 
violated i~ediately when further rolling occurs, i.e. an instantaneo~ stop occurs for sj. A 
change in the direction of motion of the point M,P after the instant 01, is typical. If cy = CT = 0, 
the points Mf” and w remain stationary when rotation occurs. 

If c” ie 0, cp” -K%” = 0 and k? ;e 0 a similar situation occurs. The only difference is that if 
these conditions are satisfied for i = 1 and i = 2, the stopping of the points My and h4: is, in 
general, instantaneous, with the exception of the case when np II nf II Np6v, the points Mp 
and My then remain stationary. 

The opposite occurs when 

In this case dsi /dv = m, i.e. when dsi is finite we obtain dv l_=O. (Hence it follows that if 
equality (3.1) holds for only a single i, the relation dsjldsi = 0 (I+ i) is satisfied when a = ct,.) 
In this case it is typical that dy changes sign after si passes through sp, and therefore if (3.1) 
only holds for a single i, a change in the direction of motion of the point Ml? (j#i) is also 
typical when this passage occurs. 

For equality (3.1) to be satisfied it is sufficient that, in particular, the line Li should make a 
contact with the surface K”Q at the point M8? of higher than the second order. But such 
contact is not necessary which can be proved by putt~g, for instance 

KaoQ={(x,y,z): 2=x2-y2f, My(O,O,O), r, ={(x,y,O): (x+Y)~ =X-J+, @“(O,I,O). 

The surface K”Q was assumed above to have only a single common point My with each of 
the lines L,. If this requirement is not imposed, two versions of the formulation of the problem 
are possible. Thus, we can assume that the surface K”Q is permeable for the lines Li. This 
means that PQ n Lj can also include other points, besides M,?, for which there is no contact 
req~rement. In this case the use of system (1.1) is the same as when K”Q n Li = f&l‘?}. 

In the second form of the statement of the problem, which is more natural in the context 
of mechanics (the rolling of a rigid body of fixed shape), the lines Li should not be inside 
K*Q. Then, during rolling characteristic points of yet another type can occur, specified by the 
values a = a, for which the surface K%Q has more than one common point with at least one of 
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the lines Z$. Here, when the rotation continues, the appearance of discontinuities of the first 
kind of the functions ~+Pu,?, u:, 
Section 5. 

$7 when a= a, is typical. An example will be given in 

4. THE CHOICE OF THE ROLLING PARAMETER 

It is natural to introduce the variable w = f I dy I by sing small angles of rotation of the 
surface KaQ from the initial position to any current position. This variable can be used in the 
system of equations (1.1) by putting a = w, which preserves its symmetrical form. To fix the 
geometrical meaning of the argument we must add Eq. (2.1). (This is sufficient for any single i, 
since if dv is eliminated from Eqs (2.1) with i = 1, 2 we obtain the consequence from system 
(1.1)). The drawback of introducing 

L- 
is the fact that, in the general case, it has no direct 

geome~ic~ meaning, if the vector IMz changes direction, because an increment of \y 
depends not only on the initial and final positions of ZPQ but also on the whole method of 
transferring from one position to another. 

When investigating the dynamics of rolling it is natural to assume that a in Eqs (1.1) is the 
time t. In this case we must add to Eqs (1.1) the equation which specifies the velocity of motion 
of the representative point along a trajectory in the phase space. Suppose the motion of the 
body, bounded by the surface KQ, occurs in a potential force field, and suppose the potential 
energy of the body, when the points (4, u,), (r+, u,) EQ coincide with the points s, and s, of 
the lines L, and & respectively, is equal to U(h, u,, y, u,, s,, s2) and the moment of inertia 
of this body about the axis passing through the points (u.,, y) and (4, u,) is equal to Z(h, u,, 
z+, uJ. The necessary supplementary equation, if energy dissipation is ignored, then has the 
form 

where the expression for dtp must be substituted from (2.1). 

5. EXAMPLE 1. ROLLING OF A CIRCULAR CYLINDER ALONG 
PARALLEL CATENARIES 

Consider the simplest kind of rolling of a circular cylinder of radius R along the pair of parallel 
catenaries. Here we have 

Q: r = Rcosvi+uj+Rsinuk 

4: r=aarsh(sla)i+(-t)‘li+(a2+s2)Ytk (i=1,2) 

where a,1 > 0 are parameters. We shall assume that during rolling the generatrices of the cylinder remain 
parallel to the y-axis. All possible motions are then obtained from a single motion by simple translations 
and rotations. We therefore put 

ui I (-#I (i = 1.2). ut = V2 =:u, sr ‘= s2 =:s 

System (1.1) reduces to the single equation I Ru’I=I s’i, i.e. we can assume that Rv=~+const. 
Furthermore, formula (2.1) gives 
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Hence, we obtain that if R < a, there are no characteristic points mentioned in Section 3 and we can put 

When R = a a stationary point s = 0 for v(s) appears. 
Now suppose that R > a; this case is of greater interest. If the surface K”Q is assumed to be permeable 

for the lines L,, it can roll uninterruptedly along them, i.e. s can be taken as the parameter cr. However, 

when s increases in the interval (-[a(R- a)]“‘, [a(R - a)]“‘), we then have dv < 0, i.e. rotation occurs in 

the negative direction. 
-If the surface K”Q is not permeable for the lines Li when R > a, the picture is different. When 

s = fah(R/a) the surface K”Q has two points of contact with each of the lines Li, where h(p) is the single 

positive root of the equation 

h=sh[ph(l+hZ)-‘1 (p>l) 

Hence, two characteristic points of the latter type described in Section 3 appear here and s can only 
take the values in the intervals (-0, -aA(Rla)) and (ah(Rla), -). When the surface K”Q reaches these 

points it “passes” continuously from one interval to another so that s and 2) undergo discontinuities of the 
fist kind but cp remains continuous. 

6. EXAMPLE 2. ROLLING OF A SPHERE ALONG A PAIR OF PLANE LINES WHICH 
ARE SYMMETRICAL WITH RESPECT TO EACH OTHER 

The characteristic feature of the rolling of a sphere is that one more finite equation connecting s1 with 

sz (in general, quite lengthy) appears here. As a result the set of geometrically different motions becomes 
two-dimensional, if the points of the sphere differ, and zero-dimensional (discrete), if they do not differ. 

Consider the simple case when the lines L, lie in the x-y plane and are symmetrical to one another 
about the x-axis, i.e. 

f,(s)=x(s)i+y(s)j, f2((s)=x(s)i-y(s)] 

where x(.) and y(.) are specified sufficiently smooth functions, and 

y(s) > 0, x’(s)> 0, [x’(s)]* +[y’(s)J2 = 1 

Let Q be a sphere of radius R and u and u be spherical coordinates with poles on the y-axis, i.e. 

From considerations of symmetry we obtain 

S’ ES2 =:s, u, 59 =:u, u, =x-u2 =:uE(O,1[;/2) 

Equality (1.2) takes the form RWSZ)= y and defines the quantities u(s), while the fist equation of (1.1) 

takes the form 

R2(sin2udu2+dv2)=ds2 

whence we obtain the equation 
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for the function ~-U(S). Here the upper (lower) sign is chosen if the z-coordinate of the centre of the 
sphere K”Q is greater (respectively less) than zero. 

Formula (6.1) implies, in particular, the necessary condition for rolling to be possible 

y(s) d Rx’(s) (6.2) 

When this inequality becomes an equality the centre of the sphere K”Q lies in the x-y plane. 

To apply formula (2.1) we find 

es = 2x’yk, f8!(si) = x’i - (-1)’ y'j, k,y = 1 / R 

-tii,_(-l)‘yjr 
(R*x’* -y*)’ k 

x’ XI 1 
with the same rule of signs as in formula (6.1). Hence we obtain 

dr= r(R*(X’(s)]* -ry(s)l*]~hy (6.3) 

Thus, the points, at which inequality (6.1) become an equality, are characteristic points, namely, 

stationary for s, w has no stationary points here and, hence, \y can be globally taken as the parameter a. 
Note that (6.1) and (6.3) imply the inequality I dul& 16 1 which becomes an equality only if y’(s) = 0. 

From (6.3) we obtain the differential equation 

d*s / dqt2 + y(s)y’(s) - R*x’(s)x”(s) = 0 

showing, among other things, what happens near the characteristic values of s; namely, if s = s * is such a 
value and the condition 

y’$)+ Rx$) (6.4) 

holds then for s= s* we obtain drld\y=O, d2sldv2 #to, i.e. when \v passes through w*(sI,_,,= s*) the 

function w w s(w) changes the direction of its variation. This means that the centre of the sphere K’Q 

crosses the x-y plane and the sphere starts to move backwards. If inequality (6.2) is strictly satisfied inside 
acertaininterval s**Gsds* and becomes an equality at the ends of the interval, and condition (6.4) is 
satisfied at both ends, then, when r+~ increases continuously, the sphere moves periodically with a period 

(over w) equal to 

‘I’= 25 (R*[r’(s)]* -[y(s$)-%s 

S 

Suppose, for example, that the lines L., have the equation y = (-ly-‘uch(x/a) with 0 < a < R and suppose 

s is measured from the point (0, a). The critical points are then s = f[a(R- a)]“’ and the period (over v) is 

equal to 

x [n(R-41 
y=4 j (a2+s2)Y2[a2R2-(a2+s ) 1 *2-K*= 4a 

i) [R(R-a)]’ 

where lJ is the elliptic integral of the third kind. 
If we require that y’(s*)= Rx”(s*) instead of condition (6.4), then in a sufficient vicinity of s* the 

inequality 

1R2[~‘(~)]*-[y(~)]*1~C2(s-s*)* (C=const>O) 
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holds and it therefore follows from (6.3) that I a!~/& I6 C I s-s* I. Hence, when s + s* we have 

f(e” Is-s*t)=Cef*ls-s*t+e~s~(s-s*)~-e~ J\y ’ ( ~ts-s*t-~~~]~o 
Hence e& I s-s* I> const > 0 and, therefore, s + s* only when w -_) =. 
Thus, the sphere K”Q approaches the characteristic point only asymptotically, making an infinite 

number of revolutions. Since in the liiting position, when s = 9, rotation without changing s is possible, 

we obtain that the case under consideration is realized if and only if y(s*) = R, y’(s*) = 0. 

7. APPENDIX. PROOF OF THE THEOREM 

We will first prove the lemma on the change in curvature of a line when projected. We shall consider 

orthogonal projection onto a plane P’ and denote the images after projection by primes. Let h4 be a point 

of a sufficiently smooth line L. We will establish a relation between the curvature k of the line L at the 

point M and the curvature k’ of the corresponding line L’ at the point M’. 

Lemma. The following formula holds: 

k’cos3$=kccq 

where $ E [0, n/2] is the angle of inclination of the line L to the plane P ‘at the point M and y E [0, n/2] is 
the angle between P’and the touching plane P of the line L at the point M. 

Proof. Without loss of generality, we will assume that the line L lies in the plane P. Let 1 be the tangent 
to L at the point M, 2 be the unit vector of this tangent, n be the unit vector of the principle normal to L at 
M,and d.lP’betheunitvector.Choosing AEZ, BEL, ABIlnwehave IABI-kl~12/2as A+M. 

Furthermore, projecting onto P’, we obtain 

M’A’=m-@%d)d, A’B”=ii%-(a.d)d 

Therefore, the modulus p of the projection of the vector A’B’ onto the principle normal to L’ at M’ is 

equal to 

=171ii,[l-(T.d)2-(n.d)21~ =IAB,3 

[l-(vdJ21x cosp 

However, it can be easily verified that k’ = 2li(p I M’A’ I-‘) as A -_) M. Hence - 
t~~~t~t-2[l-(~.d)2]-1 

cosp 
=2- lim &$=k% 

cos p A-tM tMAl cd p 

This proves the lemma. 
Considering now the proof of the theorem, we will first examine the special case when KaQ is a 

cylindrical surface with generatrices parallel to the MpMz axis, and the line L1 lies in the plane 
qJ_ MPM,“. We also assume that the vectors f,qsp) and VP are directed opposite to the vector cp and that 

k;, ==I f;(sp) I< kp. We replace the lines L, and K”Qnq by their osculating circles at the point Mp and 
we denote the centre of the second circle by Oy.Then, after rotation we obtain, omitting small higher- 
order terms 
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Consideration of the remaining forms of arrangement of the vectors f”(sp) and I.$’ relative to c; 
shows that, in all these versions, in the special case ihvesti8ated, the equality 

holds for any relation between k: and kf. 
Now let the surface K”Q and the hues L1 be arbitrary. Up to third-order infinitesimal terms in $s,, 

replace the line L1 by its osculating circle r: at the point Mp and replace the track of this line on the 
surface K”Q, which is produced when the latter rolls, by the line OF, of the intersection of K”Q with the 
plane passing through Mp parallel to the vectors fJ$) and CT. If we now draw a cylindrical surface 
grout Df with genera&ices parallel to the vector m and project c and DF onto the plane 
Sl_&@@, then the general case under consideration reduces to the special case analysed above, 

Putting 7; := t@y), G f; ~~M~~~~~ I for brevity, we find the curvature e of the line I;rp at the 
point h#p 

by Meusnier’s theorem [!I]. 
We now use the lemma. Since, in this case, p is the complementary angle between 17 and G and y is 

the angle between the vectors Ty X (7: X f$) = (?F * t;“z)Ty - fz and fs then, by the lemma, we find the 
curvature after projection 

The curvature k:’ of the projected line LI is found in a similar way. Here #l is the same as above and y 
is the angle between &“($) XT: and f& (We assume that f”(sp)l: 0, otherwise we have kt* = 0.). Putting 
pp = fy(s,p) / I jy(sg I we obtain by the lemma 

Finally, note that the element of ds, of the length of the arc of the line 4 on projection becomes 
shorter by the formula 

Hence, appIying formula (7.1) to &,! and reverting lo the 
obtain (2.1). 
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